csirmaz.openscad-py/openscad_py.py

653 lines
24 KiB
Python
Raw Normal View History

2023-12-10 22:38:11 +00:00
from typing import Union as TUnion
2024-03-05 00:11:55 +00:00
from typing import List
2023-12-10 23:41:28 +00:00
import math
2023-12-10 23:02:49 +00:00
import numpy as np
EPSILON = 1e-7
NP_TYPE = np.float_
2023-12-10 22:38:11 +00:00
class Point:
2024-03-15 12:00:13 +00:00
"""Represents a point or vector in arbitrary dimensions"""
2023-12-10 22:38:11 +00:00
def __init__(self, coords):
2023-12-10 23:02:49 +00:00
self.c = np.array(coords, dtype=NP_TYPE)
2023-12-10 22:38:11 +00:00
@classmethod
def c(cls, coords: TUnion[list, 'Point']) -> 'Point':
2024-03-15 12:00:13 +00:00
"""Ensure coords is an instance of Point (idempotent)"""
2023-12-10 22:38:11 +00:00
if isinstance(coords, Point):
return coords
return Point(coords)
def render(self) -> str:
2023-12-10 23:41:28 +00:00
"""Render the point into a SCAD script"""
return "[" + (",".join([str(c) for c in self.c])) + "]"
2023-12-10 23:02:49 +00:00
2023-12-10 23:41:28 +00:00
def scale(self, x: float) -> 'Point':
2023-12-10 23:02:49 +00:00
"""Scale the current vector/point by a scalar"""
return self.__class__(self.c * x)
2023-12-10 23:41:28 +00:00
def add(self, p: 'Point') -> 'Point':
2023-12-10 23:02:49 +00:00
assert isinstance(p, Point)
assert self.dim() == p.dim()
return self.__class__(self.c + p.c)
2023-12-10 23:41:28 +00:00
def sub(self, p: 'Point') -> 'Point':
2023-12-10 23:02:49 +00:00
assert isinstance(p, Point)
assert self.dim() == p.dim()
return self.__class__(self.c - p.c)
def dim(self) -> int:
"""Return the number of dimensions"""
return self.c.shape[0]
def is_zero(self) -> bool:
"""Return whether all coordinates are very close to 0"""
return np.all(np.abs(self.c) < EPSILON)
def length(self) -> float:
"""Return the length of the vector"""
return np.sqrt(np.square(self.c).sum())
2023-12-10 23:41:28 +00:00
def norm(self) -> 'Point':
2023-12-10 23:02:49 +00:00
l = self.length()
if l == 0:
raise Exception("normalising 0 vector")
return self.__class__(self.c / self.length())
2023-12-10 23:41:28 +00:00
def dot(self, p: 'Point') -> float:
"""Return the dot product"""
2023-12-10 23:02:49 +00:00
return np.dot(self.c, p.c)
2023-12-10 23:41:28 +00:00
def cross(self, p: 'Point') -> 'Point':
"""Return the cross product"""
assert self.dim() == 3
assert p.dim() == 3
return Point([
self.c[1]*p.c[2] - self.c[2]*p.c[1],
self.c[2]*p.c[0] - self.c[0]*p.c[2],
self.c[0]*p.c[1] - self.c[1]*p.c[0]
])
def eq(self, p: 'Point') -> bool:
2023-12-10 23:02:49 +00:00
return (self.c == p.c).all()
2023-12-10 23:41:28 +00:00
def lt(self, p: 'Point') -> bool:
2023-12-10 23:02:49 +00:00
return (self.c < p.c).all()
2023-12-10 23:41:28 +00:00
def le(self, p: 'Point') -> bool:
2023-12-10 23:02:49 +00:00
return (self.c <= p.c).all()
2023-12-10 23:41:28 +00:00
def gt(self, p: 'Point') -> bool:
2023-12-10 23:02:49 +00:00
return (self.c > p.c).all()
2023-12-10 23:41:28 +00:00
def ge(self, p: 'Point') -> bool:
2023-12-10 23:02:49 +00:00
return (self.c >= p.c).all()
2023-12-10 23:41:28 +00:00
def allclose(self, p: 'Point') -> bool:
2023-12-10 23:02:49 +00:00
return self.c.shape == p.c.shape and np.allclose(self.c, p.c)
2023-12-10 23:41:28 +00:00
2024-03-05 00:11:55 +00:00
def angle(self, p: 'Point', mode: str = "deg") -> float:
"""Return the angle between two vectors in degrees or radians"""
2023-12-10 23:41:28 +00:00
r = self.dot(p)
r = r / self.length() / p.length()
r = math.acos(r)
2024-03-05 00:11:55 +00:00
if mode == "rad":
return r
if mode == "deg":
return r / math.pi * 180.
raise ValueError("Unknown mode")
2024-04-06 23:01:28 +01:00
def z_slope(self, mode: str = "deg") -> float:
"""Return the slope of a vector in degrees or radians"""
r = self.c[2] / self.length()
r = math.asin(r)
if mode == "rad":
return r
if mode == "deg":
return r / math.pi * 180.
raise ValueError("Unknown mode")
2023-12-10 23:02:49 +00:00
2023-12-10 23:41:28 +00:00
def rotate(self, coords, angle: float) -> 'Point':
2023-12-10 23:02:49 +00:00
"""Rotate. coords is a list of 2 coordinate indices that we rotate"""
assert len(coords) == 2
ca, cb = coords
s = np.sin(angle / 180. * np.pi)
c = np.cos(angle / 180. * np.pi)
r = self.clone().reset_cache()
r.c[ca] = c * self.c[ca] + s * self.c[cb]
r.c[cb] = -s * self.c[ca] + c * self.c[cb]
return r
# Operator overloading
def __add__(self, other):
return self.add(other)
def __radd__(self, other):
assert isinstance(other, Point)
return other.add(self)
2023-12-10 22:38:11 +00:00
2023-12-10 23:02:49 +00:00
def __sub__(self, other):
return self.sub(other)
def __rsub__(self, other):
assert isinstance(other, Point)
return other.sub(self)
def __mul__(self, other):
return self.scale(other)
def __rmul__(self, other):
return self.scale(other)
2023-12-10 22:38:11 +00:00
class Object:
"""Abstract class for an SCAD object"""
def _center(self) -> str:
return ('true' if self.center else 'false')
def _add(self, obj):
"""Add an object, forming a collection"""
2023-12-10 23:41:28 +00:00
return Collection([self, obj])
2023-12-10 22:38:11 +00:00
def render(self) -> str:
raise Exception("abstract method")
def translate(self, v: TUnion[list, Point]) -> 'Object':
2023-12-10 23:41:28 +00:00
"""Apply a translation"""
return Translate(v=v, child=self)
def move(self, v: TUnion[list, Point]) -> 'Object':
2023-12-10 23:41:28 +00:00
"""Apply a translation"""
return Translate(v=v, child=self)
def rotate(self, a, v: TUnion[list, Point]) -> 'Object':
2023-12-10 23:41:28 +00:00
"""Apply a rotation"""
return Rotate(a=a, v=v, child=self)
2023-12-10 22:38:11 +00:00
def scale(self, v: TUnion[list, Point, float]) -> 'Object':
"""Apply scaling. Accepts a single float for uniform scaling"""
return Scale(v=v, child=self)
def color(self, r, g, b, a=1.) -> 'Object':
"""Apply a color"""
return Color(r=r, g=g, b=b, a=a, child=self)
def extrude(self, height, convexity = 10, center: bool = False) -> 'Object':
2024-04-06 23:01:28 +01:00
"""Apply a linear extrusion,
If center is false the linear extrusion Z range is from 0 to height; if it is true, the range is from -height/2 to height/2."""
return LinearExtrude(height=height, child=self, convexity=convexity, center=center)
2024-04-06 23:01:28 +01:00
def radial_offset(self, r):
"""A new 2d interior or exterior outline from an existing outline"""
return RadialOffset(r=r, child=self)
def delta_offset(self, delta, chamfer=False):
"""A new 2d interior or exterior outline from an existing outline"""
return DeltaOffset(delta=delta, child=self, chamfer=chamfer)
def diff(self, tool: TUnion[list, 'Object']) -> 'Object':
"""Remove from the object using a difference operator"""
return Difference(subject=self, tool=tool)
def union(self, objects: TUnion[list, 'Object']) -> 'Object':
2024-03-15 12:00:13 +00:00
"""Form the union of self and an object or list of objects"""
return Union(child=Collection.c(objects)._add(self))
2023-12-10 22:38:11 +00:00
2024-03-03 02:42:07 +00:00
class Header:
2024-03-15 12:00:13 +00:00
"""Render a header (setting global values) of an OpensCAD file"""
2024-03-03 02:42:07 +00:00
2024-03-03 02:46:56 +00:00
def __init__(self, quality: str = 'draft'):
self.quality = quality
2024-03-03 02:42:07 +00:00
def render(self):
2024-03-05 00:11:55 +00:00
# See https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Other_Language_Features#Circle_resolution:_$fa,_$fs,_and_$fn
2024-03-03 02:46:56 +00:00
if self.quality == 'draft':
return ""
if self.quality == 'mid':
return "$fa=12;$fs=0.2;"
if self.quality == 'best':
return "$fa=6;$fs=0.1;"
raise ValueError("Unknown quality")
2024-03-03 02:42:07 +00:00
2023-12-10 22:38:11 +00:00
class Cube(Object):
2024-03-05 00:11:55 +00:00
"""A 3D primitive, cube.
Creates a cube in the first octant. When center is true, the cube is centered on the origin."""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#cube
2023-12-10 22:38:11 +00:00
def __init__(self, size: TUnion[list, Point], center: bool = False):
2023-12-10 23:41:28 +00:00
self.size = Point.c(size)
2023-12-10 22:38:11 +00:00
self.center = center
def render(self):
return f"cube(size={self.size.render()}, center={self._center()});"
2023-12-10 22:38:11 +00:00
2023-12-10 23:41:28 +00:00
class Sphere(Object):
2024-03-05 00:11:55 +00:00
"""A 3D primitive, sphere.
Creates a sphere at the origin of the coordinate system."""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#sphere
2023-12-10 22:38:11 +00:00
def __init__(self, r):
self.r = r
# $fa, $fs, $fn
def render(self):
return f"sphere(r={self.r});"
2023-12-10 23:41:28 +00:00
class Cylinder(Object):
2024-03-05 00:11:55 +00:00
"""A 3D primitive, cylinder.
Creates a cylinder or cone centered about the z axis. When center is true, it is also centered vertically along the z axis."""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#cylinder
2023-12-10 22:38:11 +00:00
def __init__(self, h, r=None, r1=None, r2=None, center: bool = False):
self.height = h
self.r1 = r if r1 is None else r1
self.r2 = r if r2 is None else r2
2023-12-10 23:41:28 +00:00
self.center = center
2023-12-10 22:38:11 +00:00
# $fa, $fs, $fn
def render(self):
return f"cylinder(h={self.height}, r1={self.r1}, r2={self.r2}, center={self._center()});"
2023-12-10 23:41:28 +00:00
@classmethod
def from_ends(cls, radius: float, p1: TUnion[list, Point], p2: TUnion[list, Point]) -> Object:
2023-12-10 23:41:28 +00:00
"""Construct a cylinder between two points"""
p1 = Point.c(p1)
p2 = Point.c(p2)
v = p2.sub(p1)
length = v.length()
assert length != 0
z = Point([0, 0, 1])
2024-03-05 00:11:55 +00:00
r = z.cross(v)
2023-12-10 23:41:28 +00:00
rangle = v.angle(z)
if r.length() == 0:
# The cylinder is in the Z direction
if abs(abs(rangle) - 180.) < .1:
p1 = p2
rangle = 0
r = z
2024-03-05 00:11:55 +00:00
else:
r = r.norm()
2023-12-10 23:41:28 +00:00
return cls(h=length, r=radius, center=False).rotate(a=rangle, v=r).move(p1)
2023-12-10 22:38:11 +00:00
2024-03-05 00:11:55 +00:00
class Polyhedron(Object):
"""A 3D primitive, a polyhedron defined by a list of points and faces."""
# See https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#polyhedron
# Nonplanar faces should be triangulated by opensCAD
def __init__(self, points: List[TUnion[list, Point]], faces: List[list], convexity: int = 10):
self.points = [Point.c(p) for p in points]
self.faces = faces
self.convexity = convexity
@classmethod
def torus(cls, points: List[List[TUnion[list, Point]]], convexity: int = 10):
"""Construct a torus-like polyhedron from a 2D array of points.
Each row of points must be oriented clickwise when looking from the first row (loop) toward the next.
The rows of points form loops.
"""
return cls.tube(points=points, convexity=convexity, make_torus=True)
@classmethod
def tube(cls, points: List[List[TUnion[list, Point]]], convexity: int = 10, make_torus: bool = False):
2024-03-05 00:11:55 +00:00
"""Construct a tube-like polyhedron from a 2D array of points.
Each row of points must be oriented clockwise when looking at the pipe at the start inwards.
The rows of points form loops.
If `make_torus`, create a torus-like shape instead of a pipe with ends.
2024-03-05 00:11:55 +00:00
"""
rows = len(points)
row_len = len(points[0])
point_list = []
point_map = {} # { (row_ix,col_ix) -> list_ix, ...
for row_ix, row in enumerate(points):
for col_ix, point in enumerate(row):
point_map[(row_ix, col_ix)] = len(point_list)
point_list.append(point)
faces = []
# Side faces
for row_ix in range(1, rows):
for col_ix in range(1, row_len):
faces.append([
point_map[(row_ix, col_ix-1)],
point_map[(row_ix, col_ix)],
point_map[(row_ix-1, col_ix)],
point_map[(row_ix-1, col_ix-1)]
])
faces.append([
point_map[(row_ix, row_len-1)],
point_map[(row_ix, 0)],
point_map[(row_ix-1, 0)],
point_map[(row_ix-1, row_len-1)]
])
if not make_torus:
# Starting cap
faces.append([point_map[(0,x)] for x in range(row_len)])
# Ending cap
faces.append([point_map[(rows-1,row_len-1-x)] for x in range(row_len)])
else:
# Connect the end to the start
for col_ix in range(1, row_len):
faces.append([
point_map[(0, col_ix-1)],
point_map[(0, col_ix)],
point_map[(rows-1, col_ix)],
point_map[(rows-1, col_ix-1)]
])
2024-03-05 00:11:55 +00:00
return cls(points=point_list, faces=faces, convexity=convexity)
def render(self) -> str:
faces_list = [f"[{','.join([str(x) for x in face])}]" for face in self.faces]
return f"polyhedron(points=[{','.join([p.render() for p in self.points])}], faces=[{','.join(faces_list)}], convexity={self.convexity});"
class PathTube(Object):
"""Creates a tube-like or toroid polyhedron from a path (list of points)."""
def __init__(self, points: List[TUnion[list, Point]], radius: TUnion[float, list], fn: int, make_torus: bool = False, convexity: int = 10):
"""
points: The list of points
radius: A float or a list of floats for each point
fn: int, The number of sides
make_torus: bool, Whether to make a torus instead of a pipe with ends. Warning: the last segment may be twisted.
convexity: see openscad
"""
2024-03-05 00:11:55 +00:00
self.points = [Point.c(p) for p in points]
self.radii = radius if isinstance(radius, list) else [radius for p in points]
self.fn = fn
self.make_torus = make_torus
2024-03-05 00:11:55 +00:00
self.convexity = convexity
def process(self, debug: bool = False) -> Polyhedron:
points_rows = []
for ix, point in enumerate(self.points):
if debug: print(f"//LOOP {ix}: {point.render()}")
if (not self.make_torus) and ix == 0:
2024-03-05 00:11:55 +00:00
# Start of the path
v = self.points[1].sub(point) # vector toward the first point
z_point = Point([0,0,1])
seam = v.cross(z_point) # Track a seam along the pipe using this vector pointing from the middle line
if seam.length() == 0: # v is in the z direction
seam = Point([1,0,0])
seam = seam.norm()
seam2 = v.cross(seam).norm()
if debug: print(f"//Start. v={v.render()} seam={seam.render()} seam2={seam2.render()}")
points = []
for i in range(self.fn):
a = math.pi*2*i/self.fn
points.append((seam*math.cos(a) + seam2*math.sin(a))*self.radii[ix] + point)
2024-03-05 00:11:55 +00:00
points_rows.append(points)
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
elif (not self.make_torus) and ix == len(self.points) - 1:
2024-03-05 00:11:55 +00:00
# End of the path
v = point.sub(self.points[-2])
seam2 = v.cross(seam).norm()
if debug: print(f"//End. v={v.render()} seam={seam.render()} seam2={seam2.render()}")
points = []
for i in range(self.fn):
a = math.pi*2*i/self.fn
points.append((seam*math.cos(a) + seam2*math.sin(a))*self.radii[ix] + point)
2024-03-05 00:11:55 +00:00
points_rows.append(points)
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
else:
# Middle of the path
iprev = ix - 1 if ix > 0 else len(self.points) - 1
inext = ix + 1 if ix < len(self.points) - 1 else 0
2024-03-05 00:11:55 +00:00
# (p[-1]) -va-> (p[0]) -vb-> (p[1])
va = point.sub(self.points[iprev]).norm() # vector incoming to this elbow
vb = self.points[inext].sub(point).norm() # vector going out from this elbow
2024-03-05 00:11:55 +00:00
if debug: print(f"//Middle. va={va.render()} vb={vb.render()}")
# Get the vector perpendicular to va that points to the inside of the cylinder around va according
# to the elbow at p[0]. This is the component of vb in a basis defined by va.
vdot = va.dot(vb)
vb_proj = va.scale(vdot) # The projection of vb onto va
vb_perp = vb.sub(vb_proj) # This is perpendicular to va
if debug: print(f"// vb_proj={vb_proj.render()} vb_perp={vb_perp.render()}")
va_inner = vb_perp.norm()
va_proj = vb.scale(vdot)
va_perp = va.sub(va_proj)
if debug: print(f"// va_proj={va_proj.render()} va_perp={va_perp.render()}")
vb_inner = va_perp.scale(-1).norm() # Here we want to project -va onto vb
if debug: print(f"// va_inner={va_inner.render()} vb_inner={vb_inner.render()}")
if ix == 0:
# We just choose a seam when making a torus
seam_angle = 0
else:
# The new seam on vb (seam_b) has the same angle to vb_inner as it had on va to va_inner
seam_angle = seam.angle(va_inner, mode="rad")
# need to figure out the sign of the angle
if seam_angle != 0:
if va_inner.cross(seam).dot(va) < 0:
seam_angle = -seam_angle
2024-03-05 00:11:55 +00:00
vb_inner2 = vb.cross(vb_inner).norm()
seam_b = vb_inner*math.cos(seam_angle) + vb_inner2*math.sin(seam_angle)
if debug:
if ix == 0:
print(f"// seam=N/A seam_b={seam_b.render()}")
else:
print(f"// seam={seam.render()} seam_b={seam_b.render()}")
2024-03-05 00:11:55 +00:00
vangle = va.scale(-1).angle(vb, mode="rad")
long_inner = (vb-va).norm().scale(1/math.sin(vangle/2))
# long_inner is the long axis of the elliptic intersection between the cylinders around va and vb
short = va.cross(long_inner).norm() # the short axis of the ellipse
if debug: print(f"// long_inner={long_inner.render()} short={short.render()} vangle={vangle/math.pi*180}(deg) seam_angle={seam_angle/math.pi*180}(deg)")
points = []
for i in range(self.fn):
# We draw the ellipse according to long_inner and short, but use seam_angle to get the right points
a = math.pi*2*i/self.fn + seam_angle
points.append((long_inner*math.cos(a) + short*math.sin(a))*self.radii[ix] + point)
2024-03-05 00:11:55 +00:00
points_rows.append(points)
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
seam = seam_b
return Polyhedron.tube(points=points_rows, convexity=self.convexity, make_torus=self.make_torus)
2024-03-05 00:11:55 +00:00
def render(self) -> str:
return self.process().render()
class Circle(Object):
2024-03-05 00:11:55 +00:00
"""A 2D primitive, circle.
Creates a circle (or regular polygon) at the origin."""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#circle
2024-03-05 00:11:55 +00:00
def __init__(self, r: float, fn: TUnion[int, None] = None):
self.r = r
self.fn = fn
# $fa, $fs, $fn
@classmethod
def triangle(cls, r):
"""Create a regular triangle"""
return cls(r=r, fn=3)
@classmethod
def regular_polygon(cls, r, sides: int):
"""Create a regular polygon"""
return cls(r=r, fn=sides)
def render(self) -> str:
fnstr = '' if self.fn is None else f", $fn={self.fn}"
return f"circle(r={self.r}{fnstr});"
class Polygon(Object):
"""A 2D primitive, polygon"""
def __init__(self, points, paths=None, convexity=1):
assert paths is None # not implemented yet
self.points = [Point.c(p) for p in points]
self.convexity = convexity
def render(self) -> str:
return f"polygon(points=[{','.join([p.render() for p in self.points])}], convexity={self.convexity});"
2024-03-05 00:11:55 +00:00
2023-12-10 23:02:49 +00:00
# TODO https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types
2023-12-10 22:38:11 +00:00
class Collection(Object):
2024-03-15 12:00:13 +00:00
"""Represents a collection of objects"""
2023-12-10 22:38:11 +00:00
def __init__(self, coll: list):
self.collection = coll
@classmethod
def c(cls, coll: TUnion[list, Object]) -> Object:
2024-03-15 12:00:13 +00:00
"""Ensure the list of objects is a Collection (idempotent)"""
if isinstance(coll, Object):
return coll
return cls(coll)
2023-12-10 22:38:11 +00:00
def _add(self, obj):
return self.__class__(self.collection + [obj])
def render(self) -> str:
2023-12-10 22:38:11 +00:00
return "\n".join([o.render() for o in self.collection])
class Translate(Object):
2023-12-10 23:41:28 +00:00
"""Represents a translation transformation applied to an object"""
2023-12-10 22:38:11 +00:00
def __init__(self, v: TUnion[list, Point], child: Object):
2023-12-10 22:38:11 +00:00
self.v = Point.c(v)
2023-12-10 23:41:28 +00:00
self.child = child
2023-12-10 22:38:11 +00:00
def render(self) -> str:
return f"translate(v={self.v.render()}){{\n{self.child.render()}\n}}"
2023-12-10 22:38:11 +00:00
2023-12-10 23:41:28 +00:00
class Rotate(Object):
"""Represents a rotation transformation applied to an object"""
def __init__(self, a, v: TUnion[list, Point], child: Object):
2023-12-10 23:41:28 +00:00
self.a = a
self.v = Point.c(v)
self.child = child
def render(self) -> str:
return f"rotate(a={self.a}, v={self.v.render()}){{\n{self.child.render()}\n}}"
class Scale(Object):
2024-03-15 12:00:13 +00:00
def __init__(self, v: TUnion[list, Point, float, int], child: Object):
if isinstance(v, float) or isinstance(v, int):
v = [v, v, v]
self.v = Point.c(v)
self.child = child
def render(self) -> str:
return f"scale(v={self.v.render()}){{\n{self.child.render()}\n}}"
class Color(Object):
def __init__(self, child: Object, r, g, b, a=1.):
self.color = [r, g, b, a]
self.child = child
def render(self) -> str:
return f"color(c=[{','.join([str(c) for c in self.color])}]){{ {self.child.render()} }}"
class LinearExtrude(Object):
2024-04-06 23:01:28 +01:00
"""Represents a linear extrusion applied to an object.
If center is false the linear extrusion Z range is from 0 to height; if it is true, the range is from -height/2 to height/2."""
def __init__(self, height, child: Object, convexity = 10, center: bool = False):
self.height = height
self.child = child
self.convexity = convexity
self.center = center
# twist, slices, scale (float/vector), $fn
def render(self) -> str:
return f"linear_extrude(height={self.height}, center={self._center()}, convexity={self.convexity}){{\n{self.child.render()}\n}}"
2024-04-06 23:01:28 +01:00
class RadialOffset(Object):
"""A new 2d interior or exterior outline from an existing outline"""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#offset
def __init__(self, r, child: Object):
self.r = r
self.child = child
# $fa, $fs, and $fn
def render(self) -> str:
return f"offset(r={self.r}){{\n{self.child.render()}\n}}"
class DeltaOffset(Object):
"""A new 2d interior or exterior outline from an existing outline"""
# https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#offset
def __init__(self, delta, child: Object, chamfer: bool = False):
self.delta = delta
self.child = child
self.chamfer = chamfer
def render(self) -> str:
return f"offset(delta={delta}, chamfer={'true' if self.chamfer else 'false'}){{\n{self.child.render()}\n}}"
class Union(Object):
"""Represents a union applied to an object (usually a collection of objects)"""
def __init__(self, child: TUnion[Object, list]):
self.child = Collection.c(child)
def render(self) -> str:
return f"union(){{ {self.child.render()} }}"
def union(self, objects: TUnion[list, Object]) -> Object:
return self.__class__(self.child._add(objects))
class Intersection(Object):
"""Represents an intersection applied to an object (usually a collection of objects)"""
def __init__(self, child: TUnion[Object, list]):
self.child = Collection.c(child)
def render(self) -> str:
return f"intersection(){{ {self.child.render()} }}"
class Difference(Object):
"""Represents a difference"""
def __init__(self, subject: Object, tool: TUnion[list, Object]):
self.subject = subject
self.tool = Collection.c(tool) # what to remove
def render(self) -> str:
return f"difference(){{ {self.subject.render()}\n{self.tool.render()} }}"