csirmaz.openscad-py/openscad_py/path_tube.py
2024-12-01 16:31:32 +00:00

126 lines
6.4 KiB
Python

from typing import Union as TUnion
from typing import List
import math
from openscad_py.point import Point
from openscad_py.object_ import Object
from openscad_py.polyhedron import Polyhedron
class PathTube(Object):
"""Creates a tube-like or toroid polyhedron from a path (list of points)."""
def __init__(self, points: List[TUnion[list, Point]], radius: TUnion[float, list], fn: int, make_torus: bool = False, convexity: int = 10):
"""
Arguments:
- points: The list of points
- radius: A float or a list of floats for each point
- fn: int, The number of sides
- make_torus: bool, Whether to make a torus instead of a pipe with ends. Warning: the last segment may be twisted.
- convexity: see openscad
"""
self.points = [Point.c(p) for p in points]
self.radii = radius if isinstance(radius, list) else [radius for p in points]
self.fn = fn
self.make_torus = make_torus
self.convexity = convexity
def process(self, debug: bool = False) -> Polyhedron:
"""Generate a Polyhedron object from the parameters"""
points_rows = []
for ix, point in enumerate(self.points):
if debug: print(f"//LOOP {ix}: {point.render()}")
if (not self.make_torus) and ix == 0:
# Start of the path
v = self.points[1].sub(point) # vector toward the first point
z_point = Point([0,0,1])
seam = v.cross(z_point) # Track a seam along the pipe using this vector pointing from the middle line
if seam.length() == 0: # v is in the z direction
seam = Point([1,0,0])
seam = seam.norm()
seam2 = v.cross(seam).norm()
if debug: print(f"//Start. v={v.render()} seam={seam.render()} seam2={seam2.render()}")
points = []
for i in range(self.fn):
a = math.pi*2*i/self.fn
points.append((seam*math.cos(a) + seam2*math.sin(a))*self.radii[ix] + point)
points_rows.append(points)
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
elif (not self.make_torus) and ix == len(self.points) - 1:
# End of the path
v = point.sub(self.points[-2])
seam2 = v.cross(seam).norm()
if debug: print(f"//End. v={v.render()} seam={seam.render()} seam2={seam2.render()}")
points = []
for i in range(self.fn):
a = math.pi*2*i/self.fn
points.append((seam*math.cos(a) + seam2*math.sin(a))*self.radii[ix] + point)
points_rows.append(points)
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
else:
# Middle of the path
iprev = ix - 1 if ix > 0 else len(self.points) - 1
inext = ix + 1 if ix < len(self.points) - 1 else 0
# (p[-1]) -va-> (p[0]) -vb-> (p[1])
va = point.sub(self.points[iprev]).norm() # vector incoming to this elbow
vb = self.points[inext].sub(point).norm() # vector going out from this elbow
if debug: print(f"//Middle. va={va.render()} vb={vb.render()}")
# Get the vector perpendicular to va that points to the inside of the cylinder around va according
# to the elbow at p[0]. This is the component of vb in a basis defined by va.
vdot = va.dot(vb)
vb_proj = va.scale(vdot) # The projection of vb onto va
vb_perp = vb.sub(vb_proj) # This is perpendicular to va
if debug: print(f"// vb_proj={vb_proj.render()} vb_perp={vb_perp.render()}")
va_inner = vb_perp.norm()
va_proj = vb.scale(vdot)
va_perp = va.sub(va_proj)
if debug: print(f"// va_proj={va_proj.render()} va_perp={va_perp.render()}")
vb_inner = va_perp.scale(-1).norm() # Here we want to project -va onto vb
if debug: print(f"// va_inner={va_inner.render()} vb_inner={vb_inner.render()}")
if ix == 0:
# We just choose a seam when making a torus
seam_angle = 0
else:
# The new seam on vb (seam_b) has the same angle to vb_inner as it had on va to va_inner
seam_angle = seam.angle(va_inner, mode="rad")
# need to figure out the sign of the angle
if seam_angle != 0:
if va_inner.cross(seam).dot(va) < 0:
seam_angle = -seam_angle
vb_inner2 = vb.cross(vb_inner).norm()
seam_b = vb_inner*math.cos(seam_angle) + vb_inner2*math.sin(seam_angle)
if debug:
if ix == 0:
print(f"// seam=N/A seam_b={seam_b.render()}")
else:
print(f"// seam={seam.render()} seam_b={seam_b.render()}")
vangle = va.scale(-1).angle(vb, mode="rad")
long_inner = (vb-va).norm().scale(1/math.sin(vangle/2))
# long_inner is the long axis of the elliptic intersection between the cylinders around va and vb
short = va.cross(long_inner).norm() # the short axis of the ellipse
if debug: print(f"// long_inner={long_inner.render()} short={short.render()} vangle={vangle/math.pi*180}(deg) seam_angle={seam_angle/math.pi*180}(deg)")
points = []
for i in range(self.fn):
# We draw the ellipse according to long_inner and short, but use seam_angle to get the right points
a = math.pi*2*i/self.fn + seam_angle
points.append((long_inner*math.cos(a) + short*math.sin(a))*self.radii[ix] + point)
points_rows.append(points)
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
seam = seam_b
return Polyhedron.tube(points=points_rows, convexity=self.convexity, make_torus=self.make_torus)
def render(self) -> str:
"""Render the object into OpenSCAD code"""
return self.process().render()