from typing import Union as TUnion from typing import List import math import numpy as np EPSILON = 1e-7 NP_TYPE = np.float_ class Point: """Represents a point or vector in arbitrary dimensions""" def __init__(self, coords): self.c = np.array(coords, dtype=NP_TYPE) @classmethod def c(cls, coords: TUnion[list, 'Point']) -> 'Point': """Ensure coords is an instance of Point (idempotent)""" if isinstance(coords, Point): return coords return Point(coords) def render(self) -> str: """Render the point into a SCAD script""" return "[" + (",".join([str(c) for c in self.c])) + "]" def render_stl(self) -> str: return " ".join([str(c) for c in self.c]) def scale(self, x: float) -> 'Point': """Scale the current vector/point by a scalar""" return self.__class__(self.c * x) def add(self, p: 'Point') -> 'Point': assert isinstance(p, Point) assert self.dim() == p.dim() return self.__class__(self.c + p.c) def sub(self, p: 'Point') -> 'Point': assert isinstance(p, Point) assert self.dim() == p.dim() return self.__class__(self.c - p.c) def dim(self) -> int: """Return the number of dimensions""" return self.c.shape[0] def is_zero(self) -> bool: """Return whether all coordinates are very close to 0""" return np.all(np.abs(self.c) < EPSILON) def length(self) -> float: """Return the length of the vector""" return np.sqrt(np.square(self.c).sum()) def norm(self) -> 'Point': l = self.length() if l == 0: raise Exception("normalising 0 vector") return self.__class__(self.c / self.length()) def dot(self, p: 'Point') -> float: """Return the dot product""" return np.dot(self.c, p.c) def cross(self, p: 'Point') -> 'Point': """Return the cross product""" assert self.dim() == 3 assert p.dim() == 3 return Point([ self.c[1]*p.c[2] - self.c[2]*p.c[1], self.c[2]*p.c[0] - self.c[0]*p.c[2], self.c[0]*p.c[1] - self.c[1]*p.c[0] ]) def eq(self, p: 'Point') -> bool: return (self.c == p.c).all() def lt(self, p: 'Point') -> bool: return (self.c < p.c).all() def le(self, p: 'Point') -> bool: return (self.c <= p.c).all() def gt(self, p: 'Point') -> bool: return (self.c > p.c).all() def ge(self, p: 'Point') -> bool: return (self.c >= p.c).all() def allclose(self, p: 'Point') -> bool: return self.c.shape == p.c.shape and np.allclose(self.c, p.c) def angle(self, p: 'Point', mode: str = "deg") -> float: """Return the angle between two vectors in degrees or radians""" r = self.dot(p) r = r / self.length() / p.length() r = math.acos(r) if mode == "rad": return r if mode == "deg": return r / math.pi * 180. raise ValueError("Unknown mode") def z_slope(self, mode: str = "deg") -> float: """Return the slope of a vector in degrees or radians""" r = self.c[2] / self.length() r = math.asin(r) if mode == "rad": return r if mode == "deg": return r / math.pi * 180. raise ValueError("Unknown mode") def rotate(self, coords, angle: float) -> 'Point': """Rotate. coords is a list of 2 coordinate indices that we rotate""" assert len(coords) == 2 ca, cb = coords s = np.sin(angle / 180. * np.pi) c = np.cos(angle / 180. * np.pi) r = self.clone().reset_cache() r.c[ca] = c * self.c[ca] + s * self.c[cb] r.c[cb] = -s * self.c[ca] + c * self.c[cb] return r # Operator overloading def __add__(self, other): return self.add(other) def __radd__(self, other): assert isinstance(other, Point) return other.add(self) def __sub__(self, other): return self.sub(other) def __rsub__(self, other): assert isinstance(other, Point) return other.sub(self) def __mul__(self, other): return self.scale(other) def __rmul__(self, other): return self.scale(other) def __neg__(self): return self.scale(-1.)