from typing import Union import numpy as np EPSILON = 1e-7 NP_TYPE = np.float_ class Point: """Represents a 3D point of vector""" def __init__(self, coords): self.c = np.array(coords, dtype=NP_TYPE) @classmethod def c(cls, coords: Union[list, Point]) -> Point: """Ensure coords is an instance of Point""" if isinstance(coords, Point): return coords return Point(coords) def render(self) -> str: return ",".join([str(c) for c in self.c]) def scale(self, x: float) -> Point: """Scale the current vector/point by a scalar""" return self.__class__(self.c * x) def add(self, p: Point) -> Point: assert isinstance(p, Point) assert self.dim() == p.dim() return self.__class__(self.c + p.c) def sub(self, p: Point) -> Point: assert isinstance(p, Point) assert self.dim() == p.dim() return self.__class__(self.c - p.c) def dim(self) -> int: """Return the number of dimensions""" return self.c.shape[0] def is_zero(self) -> bool: """Return whether all coordinates are very close to 0""" return np.all(np.abs(self.c) < EPSILON) def length(self) -> float: """Return the length of the vector""" return np.sqrt(np.square(self.c).sum()) def norm(self) -> Point: l = self.length() if l == 0: raise Exception("normalising 0 vector") return self.__class__(self.c / self.length()) def dot(self, p: Point) -> float: return np.dot(self.c, p.c) def eq(self, p: Point) -> bool: return (self.c == p.c).all() def lt(self, p: Point) -> bool: return (self.c < p.c).all() def le(self, p: Point) -> bool: return (self.c <= p.c).all() def gt(self, p: Point) -> bool: return (self.c > p.c).all() def ge(self, p: Point) -> bool: return (self.c >= p.c).all() def allclose(self, p: Point) -> bool: return self.c.shape == p.c.shape and np.allclose(self.c, p.c) def rotate(self, coords, angle: float) -> Point: """Rotate. coords is a list of 2 coordinate indices that we rotate""" assert len(coords) == 2 ca, cb = coords s = np.sin(angle / 180. * np.pi) c = np.cos(angle / 180. * np.pi) r = self.clone().reset_cache() r.c[ca] = c * self.c[ca] + s * self.c[cb] r.c[cb] = -s * self.c[ca] + c * self.c[cb] return r # Operator overloading def __add__(self, other): return self.add(other) def __radd__(self, other): assert isinstance(other, Point) return other.add(self) def __sub__(self, other): return self.sub(other) def __rsub__(self, other): assert isinstance(other, Point) return other.sub(self) def __mul__(self, other): return self.scale(other) def __rmul__(self, other): return self.scale(other) class Object: """Abstract class for an SCAD object""" def __init__(self): pass def _center(self) -> str: return ('true' if self.center else 'false') def add(self, obj): return Collection([self, action]) def render(self) -> str: raise Exception("abstract method") def move(self, v: Union[list, Point]): return Translate(v, self) class Cube(Object): def __init__(self, size: Union[list, Point], center: bool = False): self.size = Point.c(position) self.center = center def render(self): return f"cube(size=[{self.size.render()}], center={self._center()});" def Sphere(Object): def __init__(self, r): self.r = r # $fa, $fs, $fn def render(self): return f"sphere(r={self.r});" def Cylinder(Object): def __init__(self, h, r=None, r1=None, r2=None, center: bool = False): self.height = h self.r1 = r if r1 is None else r1 self.r2 = r if r2 is None else r2 # $fa, $fs, $fn def render(self): return f"cylinder(h={self.height}, r1={self.r1}, r2={self.r2}, center={self._center()});" # TODO polyhedron(points=[[],], faces[[p,],], convexity=) # TODO https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types class Collection(Object): def __init__(self, coll: list): self.collection = coll def add(self, obj): self.collection.append(obj) def render(self): return "\n".join([o.render() for o in self.collection]) class Translate(Object): def __init__(self, v: Union[list, Point], child: Object): self.v = Point.c(v) def render(self): return f"translate(v=[{self.v.render()}]){{\n{self.child.render()}\n}}"