mirror of
https://github.com/csirmaz/openscad-py.git
synced 2025-06-21 10:25:41 +02:00
Support for variable radii and torus-like paths
This commit is contained in:
parent
b2507137fd
commit
8b5d63efab
1 changed files with 64 additions and 24 deletions
|
@ -291,10 +291,20 @@ class Polyhedron(Object):
|
|||
self.convexity = convexity
|
||||
|
||||
@classmethod
|
||||
def tube(cls, points: List[List[TUnion[list, Point]]], convexity: int = 10):
|
||||
def torus(cls, points: List[List[TUnion[list, Point]]], convexity: int = 10):
|
||||
"""Construct a torus-like polyhedron from a 2D array of points.
|
||||
Each row of points must be oriented clickwise when looking from the first row (loop) toward the next.
|
||||
The rows of points form loops.
|
||||
"""
|
||||
return cls.tube(points=points, convexity=convexity, make_torus=True)
|
||||
|
||||
|
||||
@classmethod
|
||||
def tube(cls, points: List[List[TUnion[list, Point]]], convexity: int = 10, make_torus: bool = False):
|
||||
"""Construct a tube-like polyhedron from a 2D array of points.
|
||||
Each row of points must be oriented clockwise when looking at the pipe at the start inwards.
|
||||
The rows of points form loops.
|
||||
If `make_torus`, create a torus-like shape instead of a pipe with ends.
|
||||
"""
|
||||
rows = len(points)
|
||||
row_len = len(points[0])
|
||||
|
@ -323,11 +333,23 @@ class Polyhedron(Object):
|
|||
point_map[(row_ix-1, row_len-1)]
|
||||
])
|
||||
|
||||
# Starting cap
|
||||
faces.append([point_map[(0,x)] for x in range(row_len)])
|
||||
|
||||
# Ending cap
|
||||
faces.append([point_map[(rows-1,row_len-1-x)] for x in range(row_len)])
|
||||
if not make_torus:
|
||||
|
||||
# Starting cap
|
||||
faces.append([point_map[(0,x)] for x in range(row_len)])
|
||||
# Ending cap
|
||||
faces.append([point_map[(rows-1,row_len-1-x)] for x in range(row_len)])
|
||||
|
||||
else:
|
||||
|
||||
# Connect the end to the start
|
||||
for col_ix in range(1, row_len):
|
||||
faces.append([
|
||||
point_map[(0, col_ix-1)],
|
||||
point_map[(0, col_ix)],
|
||||
point_map[(rows-1, col_ix)],
|
||||
point_map[(rows-1, col_ix-1)]
|
||||
])
|
||||
|
||||
return cls(points=point_list, faces=faces, convexity=convexity)
|
||||
|
||||
|
@ -339,10 +361,18 @@ class Polyhedron(Object):
|
|||
class PathTube(Object):
|
||||
"""Creates a tube-like or toroid polyhedron from a path (list of points)."""
|
||||
|
||||
def __init__(self, points: List[TUnion[list, Point]], radius: float, fn: int, convexity: int = 10):
|
||||
def __init__(self, points: List[TUnion[list, Point]], radius: TUnion[float, list], fn: int, make_torus: bool = False, convexity: int = 10):
|
||||
"""
|
||||
points: The list of points
|
||||
radius: A float or a list of floats for each point
|
||||
fn: int, The number of sides
|
||||
make_torus: bool, Whether to make a torus instead of a pipe with ends. Warning: the last segment may be twisted.
|
||||
convexity: see openscad
|
||||
"""
|
||||
self.points = [Point.c(p) for p in points]
|
||||
self.radius = radius
|
||||
self.fn = fn # number of sides
|
||||
self.radii = radius if isinstance(radius, list) else [radius for p in points]
|
||||
self.fn = fn
|
||||
self.make_torus = make_torus
|
||||
self.convexity = convexity
|
||||
|
||||
def process(self, debug: bool = False) -> Polyhedron:
|
||||
|
@ -351,7 +381,7 @@ class PathTube(Object):
|
|||
for ix, point in enumerate(self.points):
|
||||
if debug: print(f"//LOOP {ix}: {point.render()}")
|
||||
|
||||
if ix == 0:
|
||||
if (not self.make_torus) and ix == 0:
|
||||
# Start of the path
|
||||
v = self.points[1].sub(point) # vector toward the first point
|
||||
z_point = Point([0,0,1])
|
||||
|
@ -364,11 +394,11 @@ class PathTube(Object):
|
|||
points = []
|
||||
for i in range(self.fn):
|
||||
a = math.pi*2*i/self.fn
|
||||
points.append((seam*math.cos(a) + seam2*math.sin(a))*self.radius + point)
|
||||
points.append((seam*math.cos(a) + seam2*math.sin(a))*self.radii[ix] + point)
|
||||
points_rows.append(points)
|
||||
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
|
||||
|
||||
elif ix == len(self.points) - 1:
|
||||
elif (not self.make_torus) and ix == len(self.points) - 1:
|
||||
# End of the path
|
||||
v = point.sub(self.points[-2])
|
||||
seam2 = v.cross(seam).norm()
|
||||
|
@ -376,15 +406,17 @@ class PathTube(Object):
|
|||
points = []
|
||||
for i in range(self.fn):
|
||||
a = math.pi*2*i/self.fn
|
||||
points.append((seam*math.cos(a) + seam2*math.sin(a))*self.radius + point)
|
||||
points.append((seam*math.cos(a) + seam2*math.sin(a))*self.radii[ix] + point)
|
||||
points_rows.append(points)
|
||||
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
|
||||
|
||||
else:
|
||||
# Middle of the path
|
||||
iprev = ix - 1 if ix > 0 else len(self.points) - 1
|
||||
inext = ix + 1 if ix < len(self.points) - 1 else 0
|
||||
# (p[-1]) -va-> (p[0]) -vb-> (p[1])
|
||||
va = point.sub(self.points[ix-1]).norm() # vector incoming to this elbow
|
||||
vb = self.points[ix+1].sub(point).norm() # vector going out from this elbow
|
||||
va = point.sub(self.points[iprev]).norm() # vector incoming to this elbow
|
||||
vb = self.points[inext].sub(point).norm() # vector going out from this elbow
|
||||
if debug: print(f"//Middle. va={va.render()} vb={vb.render()}")
|
||||
# Get the vector perpendicular to va that points to the inside of the cylinder around va according
|
||||
# to the elbow at p[0]. This is the component of vb in a basis defined by va.
|
||||
|
@ -400,15 +432,23 @@ class PathTube(Object):
|
|||
vb_inner = va_perp.scale(-1).norm() # Here we want to project -va onto vb
|
||||
if debug: print(f"// va_inner={va_inner.render()} vb_inner={vb_inner.render()}")
|
||||
|
||||
# The new seam on vb (seam_b) has the same angle to vb_inner as it had on va to va_inner
|
||||
seam_angle = seam.angle(va_inner, mode="rad")
|
||||
# need to figure out the sign of the angle
|
||||
if seam_angle != 0:
|
||||
if va_inner.cross(seam).dot(va) < 0:
|
||||
seam_angle = -seam_angle
|
||||
if ix == 0:
|
||||
# We just choose a seam when making a torus
|
||||
seam_angle = 0
|
||||
else:
|
||||
# The new seam on vb (seam_b) has the same angle to vb_inner as it had on va to va_inner
|
||||
seam_angle = seam.angle(va_inner, mode="rad")
|
||||
# need to figure out the sign of the angle
|
||||
if seam_angle != 0:
|
||||
if va_inner.cross(seam).dot(va) < 0:
|
||||
seam_angle = -seam_angle
|
||||
vb_inner2 = vb.cross(vb_inner).norm()
|
||||
seam_b = vb_inner*math.cos(seam_angle) + vb_inner2*math.sin(seam_angle)
|
||||
if debug: print(f"// seam={seam.render()} seam_b={seam_b.render()}")
|
||||
if debug:
|
||||
if ix == 0:
|
||||
print(f"// seam=N/A seam_b={seam_b.render()}")
|
||||
else:
|
||||
print(f"// seam={seam.render()} seam_b={seam_b.render()}")
|
||||
|
||||
vangle = va.scale(-1).angle(vb, mode="rad")
|
||||
long_inner = (vb-va).norm().scale(1/math.sin(vangle/2))
|
||||
|
@ -419,13 +459,13 @@ class PathTube(Object):
|
|||
for i in range(self.fn):
|
||||
# We draw the ellipse according to long_inner and short, but use seam_angle to get the right points
|
||||
a = math.pi*2*i/self.fn + seam_angle
|
||||
points.append((long_inner*math.cos(a) + short*math.sin(a))*self.radius + point)
|
||||
points.append((long_inner*math.cos(a) + short*math.sin(a))*self.radii[ix] + point)
|
||||
points_rows.append(points)
|
||||
if debug: print(f"// Row: {', '.join([p.render() for p in points])}")
|
||||
|
||||
seam = seam_b
|
||||
|
||||
return Polyhedron.tube(points=points_rows, convexity=self.convexity)
|
||||
return Polyhedron.tube(points=points_rows, convexity=self.convexity, make_torus=self.make_torus)
|
||||
|
||||
def render(self) -> str:
|
||||
return self.process().render()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue